Downloads

Landslide generated impulse waves (landslide-tsunami) manual

Home     Students     Wave energy conversion     Landslide-tsunamis     NERC project     Scale effects     Ski jump hydraulics     Further research    Downloads     Publications

Home     Students     Wave energy conversion     Landslide-tsunamis     NERC project     Scale effects     Ski jump hydraulics     Further research    Downloads     Publications

Personal research website of Dr Valentin Heller

4th Coastlab Teaching school in Porto

The following generic hazard assessment manual allows for an efficient estimation of the effects of landslide-tsunamis (impulse waves) in lakes and reservoirs. Note that it is not recommended to apply the spread sheets without having read the manual.

The following presentations were given at the 4th CoastLab Teaching school in Porto in January 2012.

The following generic research complements the manual (see Publications):

· The paper Heller et al. (2016) numerically investigates some intermediate geometries between 2D and 3D .

· Heller and Spinneken (2015) present a 2D to 3D wave parameter transformation method.

· The paper Heller and Spinneken (2013) quantifies the effect of the slide type (granular versus rigid slide) and these findings should be applied instead of the outdated Section 4.3 of the manual.

· The paper Heller et al. (2012) helps to understand the effect of the water body geometry and to decide which extreme case (2D, 3D) applies best to a given geometry.

Work for industry:

Please contact Dr Heller if you require a preliminary landslide-tsunami (impulse wave) hazard assessment based on our manual. Expertise and contacts are also available if more detailed numerical simulations and/or physical model tests are required.

Some publications involving the manual

Lüthi, M.P., Viele, A. (2016). Multi-method observation and analysis of a tsunami caused by glacier calving. The Cryosphere 10(3):995-1002.

Oppikofer, T., Hermanns, R.L., Sandoy, G., Böhme, M., Jaboyedoff, M., Horton, P., Roberts, N.J., Fuchs, H. (2016). Quantification of casualties from potential rock-slope failures in Norway. Landslides and Engineered Slopes - Experience, Theory and Practice, 1537-1544, Aversa et al., eds.

Battaglia, D., Strozzi, T., Bezzi, A. (2015). Landslide hazard: Risk zonation and impact wave analysis for the Bumbuma Dam-Sierra Leone. Geology for Society and Territory-Volume  2:1129-1134, G. Lollino et al. (eds.), Springer, Basel.

Gabl, R., Seibl, J., Gems, B., Aufleger, M. (2015). 3-D-numerical approach to simulate the overtopping volume caused by an impulse wave comparable to avalanche impact in a reservoir. Natural Hazards and Earth System Sciences 15(12):2617-2630.

BGC (2012). Mitchell Pit Landslide Generated Wave Modelling. Appendix 4-E; BGC Engineering Inc. Vancouver, BC, Canada.

Cannata, M., Marzocchi, R., Molinari, M.E. (2012). Modeling of landslide-generated tsunamis with GRASS. Transactions in GIS 16:191-214.

Fuchs, H., Pfister, M., Boes, R., Perzlmaier, S., Reindl, R. (2011). Impulswellen infolge Lawineneinstoss in den Speicher Kühtai. Wasserwirtschaft 101(1-2):54-60 (in German).

Fuchs, H., Boes, R. (2010). Berechnung felsrutschinduzierter Impulswellen im Vierwald-stättersee. Wasser Energie Luft 102(3):215-221 (in German).

 

Experimental benchmark test cases for numerical simulations

A number of high quality experimental benchmark test cases have been published with the aim to support the development of numerical codes. These include the following two validation tests published on the SPHERIC (SPH European Research Interest Community) website:

· Heller, V., Rogers, B. (2015). Subaerial landslide-tsunami generation with a rigid slide in a channel (2D) and basin (3D). SPH benchmark test case 11, online publication, SPH European Research Interest Community SPHERIC website (http://spheric-sph.org/validation-tests).

· Heller, V. (2009). Subaerial landslide generated impulse waves in a wave channel. SPH benchmark test case 7, online publication, SPH European Research Interest Community SPHERIC website (online http://spheric-sph.org/validation-tests).

Some publications involving the benchmark test cases

Brühl, M., Becker, M. (2017). Analysis of impulse waves from subaerial landslide experiments using nonlinear Fourier transform (KdV-NLFT). 6th International Short Course/Conference on Applied Coastal Research, 3-6th October, Santander, Spain.

Yeylaghi, S., Moa, B., Buckham, B., Oshkai, P., Vasquez, J., Crawford, C. (2017). ISPH modelling of landslide generated waves for rigid and deformable slides in Newtonian and non-Newtonian reservoir fluids. Advances in Water Resources 107:212-232.

Gabl, R., Seibl, J., Pfeifer, M., Gems, B., Aufleger, M. (2017). 3D-numerische Modellansätze für die Berechnung von Lawineneinstössen in Speicher. Österreichische Wasser- und Abfallwirtschaft 69(1):66-75.

Cremonesi, M., Meduri, S., Perego, U., Frangi, A. (2016). An explicit Lagrangian finite element method for free-surface weakly compressible flows. Computational Particle Mechanics, 1-13.

Ma, G., Kirby, J.T., Hsu, T.-J., Shi, F. (2015). A two-layer granular landslide model for tsunami wave generation: Theory and computation. Ocean Modelling 93(9):40-55.

Wu, Q., An, Y., Liu, Q.Q. (2015). A smoothed particle hydrodynamics method for modelling soil-water interaction. Procedia Engineering 126:579-583.

James, N., Boyaval, S., Caboussat, A., Picasso, M. (2014). Numerical simulation of 3D free surface flows, with multiple incompressible immiscible phases. Application to impulse waves. International Journal for Numerical Methods in Fluids 76(12):1004-1024.

1st DualSPHysics Users Workshop, Manchester, September 2015

· Presentation A laboratory-DualSPHysics modelling approach to support landslide-tsunami hazard assessment including benchmark test case mentioned above of Heller and Rogers (2015) complemented with numerical simulations

Group Lunch Talks (Dr Heller’s internal research group meetings)

Last modified: 16.10.2017