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1 Introduction

Example of scale effects
Model

Scale ratio or scale factor l = LP/LM with LP = characteristic length in 

prototype and LM = corresponding length in model

Jet trajectory

Air concentration

1:l = 1:30

Real-world prototype
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1 Introduction

Froude number F = V/(gL)1/2 with L = characteristic length and V = 

characteristic velocity

Most hydraulic phenomena are modeled after Froude, in particular 

free surface flows (hydraulic structures, waves, wave energy converters, etc.)

Model of a hydraulic jumpModel of Anaconda wave energy converter

Froude similarity FM = FP
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1 Introduction

Froude similarity

F is the square root of inertial to gravity force; i.e. in Froude models 

the interplay of inertial and gravity force is correctly modelled

Problem: In Froude models, the Reynolds number R (inertial to viscous

force) and the Weber number W (inertial to surface tension force), etc., are

incorrectly modelled

These R and W result in scale effects, which are commonly excluded

with a limiting R and/or W (corresponding to a certain model size)

However, why can…

(i) significant scale effects be ruled out with a limiting R?

(ii) short, highly turbulent phenomena (hydraulic jumps, wave breaking),

which are affected by inertial, gravity and viscous forces, be

modelled with Froude similarity?
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1 Introduction

Aims

Two reviewed phenomena help to avoid significant scale effects:

(i) Self-similarity and

(ii) R invariance

This work aims to support Froude modelling for phenomena where both

F and R are a priori relevant:

• Wave breaking

• Dike breaching

• Turbulent flows

• Hydraulic jumps

• Sediment transport

• Wakes in rivers and waves

• High-velocity open channel flows

• Plumes and jets entering rivers and wave, etc.

Wave breaking as an example where both

F and R are relevant
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(i) Self-similarity

A time-developing (or spatial) phenomenon is called self-similar if the spati-

al distribution of its properties at various different moments of time (or spa-

tial locations) is obtained from one another by a similarity transformation

Self-similar profiles of velocity (or any other quantity) can be brought into 

congruence by simple scale factors which depend on only one of the 

variables such as location x or time t

Many features in nature and everyday life including the geometry of river 

networks and laws in finance are self-similar

1 Introduction

Examples of geometrical self-similarity in nature: (a) Romanesco broccoli, (b) fern and (c) river networks
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(i) Self-similarity

Self-similar conditions are based on symmetry analysis

The identification of self-similar flow features is desirable because…

• they are universal applicable, independent of the moment in time and/or 

spatial location,

• they are simple to compute as self-similar flows are commonly based on an 

ordinary differential equation rather than a partial differential equation,

• they require a reduced volume of experimental work and/or simplify data 

processing,

• their underlying data points collapse to a single curve or surface, and

• they are often scale-invariant such that small and cost efficient models apply.

1 Introduction
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(ii) R invariance: Example Moody diagram

1 Introduction

R invariance in Moody diagram: The friction factor becomes R invariant for R → ∞
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(ii) R invariance: Some hints why it occurs

R invariance is based on symmetry analysis as well and exclusively 

observed in high R turbulence (in contrast to self-similarity)

R invariance directly implies scale invariance (no source of scale effects)

R → ∞ corresponds to a vanishing effect of viscosity (n → 0) and/or a 

large scale motion (L → ∞ and/or V → ∞)

The NSEs are symmetrical (invariant) to certain operation (e.g. relative to a 

translation in time); for an incompressible fluid under periodic boundary 

conditions the NSEs are invariant to an operation (spatial scaling):

t, x, v → l1‒mt, lx, lmv with l  +, m   and n = 0

t = time, x = (x, y, z) = position vector and v = velocity, m = scaling exponent 

Note: m = 1/2 corresponds to Froude and m = ‒1 to Reynolds similarity

1 Introduction
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Differences and similarities between (i) and (ii)

1 Introduction
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Self-similar phenomena: Wakes

2 Examples

• Wakes are observed downstream of many structures in hydro- or 

aerodynamics (aerofoils (photo), bridge piers, risers, etc.)

• Many of these wakes are observed in free surface flows (open channels, 

rivers, waves), which are commonly modelled after Froude

• The data are self-similar because they collapse to a single curve

Wake downstream of an airfoil in a wind tunnel Self-similarity at solidity screen: normalised mean velo-

city defect versus normalised cross-flow coordinate; u

= velocity, u∞ = free stream velocity, Duc = velocity 

defect on centre line and Lc = distance centre line to cr-

oss-flow position y where 0.5Duc (Wygnanski et al. 1986)
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2 Examples

Self-similar phenomena: Jets and plumes

• Plumes arise from smoke, effluent from pollution outlets, seafloor 

hydrothermal vents and explosive volcanic eruptions (left) and are 

dominated by buoyancy at the source

• Jets include water jet fountains, water cannon for firefighting or jet pack 

dominated by momentum at the source

• Self-similarity results again in the data collapse to a single curve

Volcanic plume

Mean velocity profile of axisym-

metric jet with centreline velocity 

uc; u = velocity, r = radial coordi-

nate, x = streamwise coordinate 

and x0 = virtual origin, SHW = 

stationary hot-wire, FHW = flying 

hot-wire and LDA = laser-Doppler 

anemometry (Hussein et al. 1994)
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2 Examples

Self-similar phenomena: Shear-driven entrainment

• Relevant for deepening of oceanic boundary layers due to surface 

winds and bottom boundary layer development on spillways

• Date above were obtained with a direct numerical simulation

• Self-similarity results again in a data collapse to a single line

Shear-driven boundary layer growth into a linearly stratified fluid: (a) mixed layer depth evolution 

h(t) for six experiments and (b) collapse of data on a straight line in dimensionless form; N = 

buoyancy frequency and u* = shear velocity (Jonker et al. 2013)
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2 Examples

Self-similar phenomena: High-velocity open channel flows

• Observed on hydraulic structures such as spillways and chutes (left)

• Date on the right were obtained in a physical Froude model study

• Self-similarity results again in a data collapse to a single line

Turbulent air-water mixture on a chute Air-water skimming flow on a stepped chute described 

with analytical solution (Theory): dimensionless void 

fraction distribution C() with C = void fraction and  = 

dimensionless parameter (Chanson and Carosi 2007)
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2 Examples

Self-similar phenomena: Sediment transport

• Relevant in areas such as fluvial hydraulics and coastal engineering

• Lie Group scaling has been applied to the governing equations, which 

is an analytical transformation resulting in scaling laws different from 

Froude modelling laws

• Perform better than Froude modelling because the sediment density 

and grain density remain correctly scaled (contrary to Froude modelling)

Sediment in the 

Rhone River enter-

ing Lake Geneva 

Suspended sediment concentration over time for prototype values (Prototype), 

for up-scaled test case based on Lie group scaling (Case 2L) and on traditional 

Froude modelling (Case 2F) (Carr et al. 2015)
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R invariant phenomena: Tidal energy converters TECs

2 Examples

Horizontal axis tidal turbine 

Asymptotically appro-

ached R invariant power 

coefficient cP level for a 

tidal energy converter; 

figure suggests a 

minimum R = 800,000 
(Bachant and Wosnik 2016)

• Tens of tidal energy converters (left) are currently under research and 

development and the UK is leading due to excellent resources

• Physical modelling is challenging; R is most relevant, but results in 

unpractical scaling laws (e.g. velocity vM = lvP)

• Strategy: model correct tip speed ratio and use R as large as possible; 

the results of TECs are commonly not very reliable (scale effects)
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R invariant phenomena: Complete mixing in contact tanks

2 Examples

• Commonly used to disinfect drinking water prior to distribution (left)

• Important are mixing processes and this is either achieved under 

complete mixing (fully turbulent) or plug flow (not fully turbulent)

• Physical model study was conducted at different scales (scale series)

and results are compared; complete mixing resulting in insignificant

and plug flow in significant scale effects for l > 24 (right)

Solute transport in a chlorine contact tank Complete mixing in a contact tank: variation of curve area 

discrepancy index with scale and discharge for (a) com-

plete mixing and (b) plug flow (Teixeira and Rauen 2014)
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R invariant phenomena: Gravity currents

2 Examples

Gravity current in the atmosphere 

in Khartoum, Sudan 

Gravity current investigated with (a) set-up based on arrested gravity 

current method and (b) power spectra Gxx(f) revealing deviations of 

low from high R flow data measured in most energetic region at 

current front (Parsons and García 1998)

• These are buoyancy driven fluid flows moving due to density differen-

ces (temperature, suspended material) primarily in the horizontal direction

• Relevant for thunderstorm outflows, sea-breeze fronts, river front mixing 

with sea water in estuaries, snow avalanches, turbidity currents, etc.

• Tests were conducted at one point in gravity current front showing ‒5/3 

law (which strongly suggests self-similarity) 
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2 Examples

Phenomena and quantities involving self-similarity at large R with limitations and references
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2 Examples

Phenomena and quantities involving R invariance with limitations and references
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3 Over-shadowing

Self-similarity does not guarantee that such a motion is actually dominant 

in a flow; it may be over-shadowed by other, more dominant effects (e.g. 

shear-driven entrainment was investigated under idealised conditions)

Self-similarity is an idealised asymptotic condition after the initial 

conditions are over-come requiring potentially a long time or distance, 

such that self-similarity may never be reached (e.g. in plumes and jets)

Other force ratios may also introduce scale effects, and they may inter-

fere with features a priori believed to be R invariant (e.g. W resulting in lar-

ger air bubbles in hydraulic jumps which may indirectly affect energy dissipation)
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3 Over-shadowing

The conditions under which self-similarity and R invariance were 

observed need to be considered carefully; it may only apply to a par-

ticular region of the flow, or a particular parameter (see previous tables)

Phenomena involving biological or chemical processes (e.g. water and 

wastewater treatment tanks) require a certain amount of time for the 

reactions or processes to take place, irrespective of whether the turbulent 

mixing processes are self-similar

Despite of these limitations, self-similarity and R invariance are 

important concepts to understand why significant scale effects may be 

excluded in Froude models with a limiting R

These concepts are hoped to support the design and execution of 

many future Froude studies
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4 Conclusions

• This work aims to supporting Froude modelling for phenome-

na where both the Froude number and the Reynolds number R 

are a priori relevant

• The two concepts (i) self-similarity (at large R only) and (ii) R 

invariance have been illustrated

• These concepts explain (a) why significant scale effects in 

Froude models can be ruled out with a limiting R and (b) why 

short, highly turbulent phenomena can be modelled after Froude 

• A wide range of fluid phenomena involving self-similarity at 

large R and R invariance were reviewed

• Tables summarise many phenomena involving (i) and (ii), and 

are hopped to support many future Froude studies
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